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ASYMMETRIC IMPACT OF A JET WITH AN IDEAL NONCOMPRESSIBLE LIQUID 

Yu. A. Trishin UDC 532.522 

The problem of impact of a jet belongs among classical problems. The question of 
asymmetric impact of a jet is of special importance in view of the development of 
new methods for treating metals by means of explosive energy and, in the first 
instance, welding by explosion [i, 2]. 

We consider steady-state flow as a result of the impact of two planar jets A l and A 2 
having at infinity prescribed thicknesses h 0 and H 0 and velocity direction v (Fig. i). It 
is necessary to determine the parameters of the two jets B I and B 2 formed. Concerning values 
of velocity v at infinity, then in the case of streams of identical density the velocities 
should be identical for all four jets. This follows from the fact that free lines of the 
flow AIBz, BIA 2, A2B2, B2A I are lines of constant velocities. We shall consider flow with 
one critical point 0 at which we place the origin of a Cartesian coordinate system, and 
we set axis x parallel and toward the velocity of the approach stream in jet A I. The angle 
between converging jets A I and A 2 is designated in terms of ~, and between diverging jets 
Bz, B2, and axis x in terms of ~ and 4, respectively (see Fig. i). Let the thickness of 
jet B I be h and that of jet B 2 be H. Then if it is assumed that h0, H0, and ~ are given, 
in order to determine the remaining four unknowns h, H, ~ , and ~ we have three equations 
in all following from the laws of conservation for mass and flow, and impact for an ideal 
noncompressible liquid: 

h + H  = h o + H0; ( 1 )  

H c o s ~  - -  h cos ~ = h 0 + H0cos a; ( 2 )  

H sin ~ - -  h sin ~ = H0sin a .  (3 )  

R e l a t i o n s h i p s  (2 )  and (3 )  a r e  p r o j e c t i o n s  o f  t h e  s t r e a m  i m p a c t  on t h e  a x i s  o f  c o o r d i n a t e s  
x and y ,  r e s p e c t i v e l y .  Thus ,  t h e  p r o b l e m  a p p e a r s  t o  be i n d e t e r m i n a t e .  An a t t e m p t  t o  make 
i t  d e f i n i t e  by i n t r o d u c i n g  a s u p p l e m e n t a r y  a r b i t r a r y  h y p o t h e s i s  b e l o n g s  t o  P l a t i n i  [ 3 ] .  
It was suggested that straight line B 2 and return line B I of the diverging jet at infinity 
move in opposite directions 

= 4. (4) 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. 5, pp. 40-44, September-October, 1986. Original article submitted August 16, 1985. 

0021-8944/86/2705-0663512.50 �9 1987 Plenum Publishing Corporation 663 



There is another possibility to close the sets of equations (1)-(3) if symmetrical impact 
is considered, i.e., impact of two jets of identical thickness h 0 = H 0. Then for a diverging 
jet, as a result of symmetry the whole picture of flow is 

= ~ = ~/2. ( 5 )  

Fig. i Fig. 2 

The case of symmetrical impact was suggested by Lavrentiev on the basis of hydrodynamic 
theory for accumulation and armor piercing [4]. In order to obtain additional information 
about the flow of an impacting jet so that the set of equations (1)-(3) can be closed, we 
determine the position of the mass centers of inertia for specially isolated volumes of 
liquid in the impinging diverging jets. At a sufficiently large distance r (r + ~) from 
point to impact 0 mass flow in unit time in converging jets A I and A 2 is m 0 = h0v and M 0 = 
H0v. Center of inertia A (Fig. 2) for these separate masses of liquid is determined by 
the radius vector 

R 0 = m0ro, + M0r02 
m 0 + M 0 ' 

where r01 and r02 are radius-vectors for masses m 0 and M 0. 

Similarly for divergence of jets B i and B 2, the radius-vector of the center of inertia 
(point B) for mass flows in unit time occurring across their transverse section at distance 
r from point O: 

R = mr1 + Mr2 
m . +  M 

Here  m = hv ,  M = Hv, and  r~ and r 2 a r e  t h e i r  r a d i u s : v e c t o r s ,  r e s p e c t i v e l y .  We c a l c u l a t e  
t h e  p r o j e c t e d  r a d i u s - v e c t o r s  R0 and R on t h e  c o o r d i n a t e  a x e s .  P r o j e c t i o n s  on a x i s  x a r e  
d e t e r m i n e d  by t h e  e x p r e s s i o n s  

m o M o 
B o x =  m 0 - - ~ 0  r0I + mo+M ~ r02c~ (6) 

m M 
R X = m ~ r l C O S ~  m+M r2COs~' 

and on axis y by 

M o m . MMr~sinr  (7 )  R0~ = r ~ s i n a ,  R~ = m 0 + M 0 m ~  r l  mn ~ m + 

B e a r i n g  i n  mind a p p a r e n t  e q u a l i t i e s  r0~ = r02  = r l  = r2  and me + M0 = m + M, and c o m p a r i n g  
r e l a t i o n s h i p  ( 6 )  w i t h  ( 2 )  and r e l a t i o n s h i p  ( 7 )  w i t h  ( 3 ) ,  we f i n d  t h a t  i n  o r d e r  t o  f u l f i l l  
t h e  c o n s e r v a t i o n  r u l e  f o r  f l o w  i m p a c t  ( 2 )  and ( 3 )  i t  i s  n e c e s s a r y  t h a t  

Rex = - - R x ,  Roy = - - R u ,  

i . e . ,  t h e  r a d i u s - v e c t o r s  o f  c e n t e r s  o f  i n e r t i a  R0 and R s e p a r a t e d  f o r  m a s s e s  me, M0, and 
m, M s h o u l d  be e q u a l  i n  a b s o l u t e  v a l u e  and d i r e c t e d  i n  t h e  o p p o s i t e  d i r e c t i o n s  

R 0 =  - - R .  

Thus ,  r a d i u s - v e c t o r s  R0 and R l i e  i o n  one  s t r a i g h t  l i n e  A ' B '  p a s s i n g  t h r o u g h  t h e  s t a r t i n g  
c o o r d i n a t e .  From r e l a t i o n s h i p s  ( 6 )  and  ( 7 )  i t  i s  e a s y  t o  f i n d  t h e  s l o p e  a n g l e  $ o f  s t r a i g h t  
line A'B' to axis x 
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Rou M o sin ~ H o sin r162 

tg  X ---- ~ = m o  + Mo coT~ = %0 § Ho cos a (8) 

and the ratio of radii for circles on which lie separate masses of liquid in converging 

jets and their center of inertia: 

R V R e -4-/7 2 V e _~ M~ -~ 2raoM o cos cr n =  o x - - - o y  _ mo ( 9 )  
r r ra ~ q- M ~ 

We break down the case presented in Fig. 2 when M 0 > m 0. It is evident that point 
A (center of inertia for masses m 0 and M 0) is a common point of circle R and straight lines 
A'B' and m0M 0. If M 0 < m0, then straight line A'B' should pass through a second point C 
of intersection of straight line m0M 0 with circle r. Since point B is the center of inertia 
of masses m and M, then points B, m, and M lie on a single straight lineo We refer all 
linear values to circle radius r. We consider a cluster of straight lines passing through 
point B{-ncosx, -nsin X} and lying within central angle ~ formed by converging jets A i and 
A 2. The equation for the cluster of straight lines is: 

y = tg  8 . (x  @ n cos %) - -  n s i n  %, ( 1 0 )  

where ~ is the. slope angle of straight lines to the positive direction of axis x. Intersec- 
tion of these straight lines with a circle x 2 + y2 = 1 makes it possible to determine the 
coordinates of points m and M lying on circle r = i: 

x 1 = cos q~ = n s in 8 , s i n ( x  - -  6) + cos ~. V t - n ~ s i n e ( x - -  ~), 

x 2 = - - c o s ~ '  = cos ~ ---- - - n  s i n  6.sin(% - -  6) + ( 1 1 )  

q- cos 6. ~ f l  - - n 2 s i n 2 ( x -  ~). 

Since relationship (II) should also describe the case of symmetrical impact of a jet m 0 = 
M0, then by substituting in (ii) condition (5) for symmetrical impact ~ = $ = ~/2 and having 
from (8) X = (x/2 and from (9) n = cos (a/2), we obtain 6 = ~/2. Consequently, the solution 
of the stated problem is 

c o s ~ = n s m - ~ . . s l n  % - - - ~ - .  + c o s - ~ -  1. - n e s i n e  X - - - ~ - ;  ( 1 2 )  

-- - -  n s i n  T " s i n  X - -  + cos -~- t - -  n e s i n  e % - -  . (13) 

( ~ By noting that sin %---~ = -  

reducing them to the form 

M o - -  m o . 
M o T m  ~ s m - ~  , i t  i s  p o s s i b l e  t o  s i m p l i f y  t h e s e  r e l a t i o n s h i p s ,  

�9 20~ O~ V COS q) = lU, s i n  - - ~  -{- COS ~ t - -  ~ e  s i n  e 2 ;  

c ~  t - -  s i n e 2 ,  

(14) 

(i5) 

w h e r e  M o - -  ra o H o - -  h o 
1~ = M 0 -t- m--'--~ H o -t- h o" 

From (1)-(3) and (14), (15), we determine thicknesses h and H of diverging jets B l and 
B2 

cos T h = h ~  H~~ I - -  ~ ; 

V ~ i - -  ~t e s i n  e T 
(i6) 
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H = ho + H o [ r T 
e " (17)  

t - -  ~ sin s T 

For  s y m m e t r i c a l  impac t  w i t h  h0 = H0 (la = 0) f rom (14)  and (15)  we o b t a i n  Eq. ( 5 ) ,  and f rom 
(16)  and (17)  we o b t a i n  

h ,  = h o ( t  - -  cos---~ )" (18)  
2 / '  

H* = h~ I + c ~  (19) 

Thus, Eqs. (14)-(17) for symmetrical impact give relationships (18) and (19) between param- 
eters for an impacting jet obtained previously in hydrodynamic theory for accumulation [4] 
for thicknesses of a cumulative jet h, and stamp H,. It is interesting to note that from 
(12) and (13) or (14) and (15) for frontal impact of a converging jet with a = ~ we have 

cos g = ~ ,  c o s ~ = - - ~ ,  h = H =  h~ + H ~  
2 

This means that diverging streams are uniform in thickness and symmetrical relative 
to axis x. The same result follows from hydrodynamic accumulation theory [4] with turning 
of a given flow when jets of identical thickness collide at an angle. 

Calculated results for certain cases of asymmetric impact of a jet are shown in Table 
i, where values are not given for angles ~ which are formed by diverging jet B 2 with axis 
x. This is not by accident. We refer to Fig. 2. It is easy to demonstrate by simple cal- 
culation that straight line Mm from cluster of straight lines (i0) that passes through point 
B, for which the slope angle to the positive direction of axis x equals a/2, should pass 
through point C of the intersection of straight line m0M0 with a circle of radius R. Then 
for this circle the angle ABC described has a bearing on the arc of the circle AC, on which 
the central angle AOC also has a bearing. Consequently, LABC = I/2LAOC = x - a/2. On 
the other hand, from isosceles triangle mOM it is found that angle OMm equals (i/2)(~ - 9). 
Since angle ABC is an external angle of triangle MOB, then we have the equality 

X - -  a / 2  = (X - - ~ )  + ( t /2 )~  - -  9)~ 

whence 

9 + r = a. (20) 

Thus, angles ~ and ~ are connected by relationship (20). At the same time, (20) indi- 
cates the groundlessness of the Platini hypothesis ~ = ~. In addition, (20) is in fact the 
missing equation necessary to close the set of equations (1)-(3). By solving the set of 
equations (1)-(3) and (20) we arrive at the same expressions (12)-(15) for determining h, H, 
9, and ~, which are found in analyzing the position of centers of inertia for isolated ele- 
ments in converging and diverging jets. 

TABLE i 

Mo/mo 

3O 

15 

45 

22,5 

6O 

3O 

�9 , deg 
~, deg 

90  120 

60 

i50 

75 

i7o 

85 

180 

9O 0 i 45 

0,2 1,5 12,0 i8,i 24,3 36,9 50,0 63 ,9  73,5 78,5 

0,333333 2 10,1 i5,2 20,4 3iA 43,2 56 ,2  65;6 70,5 

0,5 3 7,6 ii,5 15,5 24,3 34,4 46,i 55,i 60,0 

0,6 4 6,i 9,2 12,5 i9,9 28,7 39,6  48,3 53,1 

0,8i8i82 l0 2,8 - 4,3 5,9 9,7 i4,9 22 ,8  30,4 35,1 

0,980198 100 0,3 0,5 0,7 i,1 1,9 3,8 7,5. li,4 

6 6 6  
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ASYMPTOTIC EXPANSIONS OF THIN AXISYMMETRIC CAVITIES 

A. G. Petrov UDC 532.58.33 

The theory of flow around a thin body [i] enables one to obtain expansions for the 
potential of the velocity field in terms of a small parameter X (thickness of the body) 
with any degree of accuracy. The first six terms of this expansion have the following orders 
of magnitude: i, X 2 in • X 2, x~In2x, X 4 in• X 4. In most works on cavitating flows, cal- 
culations are carried out by using only the two first terms of the expansion, e.g., [2]. 
The problem of determining the free boundary reduces, in that approximation, to solution 
of an ordinary differential equation. For practical reasons one should take into account 
also the third term of the expansion together with the second, which is of the order close 
to X 2, while the subsequent three terms of the expansion are of essentially smaller, close 
to X ~, order. In presence of the term X 2, the potential of the flow is expressed by the 
integral operator acting on the function defining the boundary of the body placed in the 
stream [i]. Therefore, the equation of the free boundary is a nonlinear integrodifferential 
equation. It seems that only [3] contains calculations in this approximation. The solution 
of the integrodifferential equation is shown in the form of an expansion in negative powers 
of in X. In this work the Riabushinskii scheme is used in order to obtain an asymptotic 
expansion for the drag force F in powers of a small parameter gl for arbitrary thickness 
of the cavitating body. The first term of this expansion agrees with the asymptotic formula 
given in [4]. For the flow in the Kirchhoff scheme (a = O) an expansion is obtained for 
x § ~ for the free-jet boundary. Its asymptotic behavior agrees with the law of jet expansion 
obtained independently by Gurevich and Levinson [5]. 

i. Theory of Nonseparating Flow around a Thin Body 

Here we consider the problem of flow around a thin body of rotation by a stationary 
stream of nonviscous incompressible fluid. Let all lengths be referred to the half-length 
of the body ~x, velocities be referred to the velocity of the incoming stream at infinity v~, 
and the boundary of the body in the meridional plane be defined by the equation 

y = xf(x), - - l ~ x ~ l .  ( 1 . 1 )  

The s m a l l  p a r a m e t e r  X << 1 i s  a m e a s u r e  o f  t h e  r e l a t i v e  t h i c k n e s s  o f  t h e  body  whose s h a p e  
i s  g i v e n  by t h e  f u n c t i o n  f ( x ) .  The p o t e n t i a l  $ o f  t h e  v e l o c i t y  f i e l d  i s  t o  be  found  f rom 
t h e  s o l u t i o n  o f  t h e  b o u n d a r y - v a l u e  p r o b l e m  

Ox ~ ag 2 . .~ ~ O, ( 1.2 ) 

o~ I o~ df , 

~ - ~ x ,  x 2 + y 2 _ ~  ~ .  
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